Commun à tous les candidats
Partie A
Une usine fabrique un composant électronique. Deux chaînes de fabrication sont utilisées.
La chaîne A produit des composants et la chaîne B produit le reste.
Une partie des composants fabriqués présentent un défaut qui les empêche de fonctionner à la vitesse prévue par le constructeur. En sortie de chaîne A, des composants présentent ce défaut alors qu’en sortie de chaîne B, ils ne sont que
.
On choisit au hasard un composant fabriqué dans cette usine.
On note :
l’évènement « le composant provient de la chaîne A »
l’évènement « le composant provient de la chaîne B »
l’évènement « le composant est sans défaut »
1. Montrer que la probabilité de l’évènement est
.
2. Sachant que le composant ne présente pas de défaut, déterminer la probabilité qu’il provienne de la chaîne A. On donnera le résultat à près.
Partie B
Des améliorations apportées à la chaîne A ont eu pour effet d’augmenter la proportion de composants sans défaut.
Afin d’estimer cette proportion, on prélève au hasard un échantillon de composants parmi ceux fabriqués par la chaîne A.
Dans cet échantillon, la fréquence observée de composants sans défaut est de .
1. Déterminer un intervalle de confiance de la proportion au niveau de confiance de
.
2. Quelle devrait être la taille minimum de l’échantillon pour qu’un tel intervalle de confiance ait une amplitude maximum de ?
Partie C
La durée de vie, en années, d’un composant électronique fabriqué dans cette usine est une variable aléatoire qui suit la loi exponentielle de paramètre
(où
est un nombre réel strictement positif).
On not